
Agile	 software	 development	 and	 user	
centered	 design	 processes:	 can	 they	 co-‐
exist?	

Background	
There is an imaginary line in interactive systems with the user on one side and
the software on the other. This imaginary line is the physical interface between
these two elements – often called the user interface but more correctly called the
user-computer or human-computer interface (the interface between these two
subsystems). This imaginary line also separates the people who work in the field
into those focused on the user side of the line (the fields of Human Computer
Interaction, Human Factors Engineering, Visual Design, Interaction Design, and
Industrial Design) and those that focus on the hardware and software side of the
line (Software Engineering, Hardware Engineering, Electrical Engineering, and
Mechanical Engineering). Though some people try to work on both sides of the
line, the separation is real–the professional backgrounds of are different, the
techniques used are different, and the focus of the activities are different.

In attempting to document an effective process for the design and development
of interactive systems, some processes attempt to ignore this line or believe that
one side can address the issues of the other. This is a mistake, and there is no
better example of this issue then in the on-going discussions of the relationship
between the agile software development process and the user-centered design
process.

There are a number of processes that have emerged from software engineering.
The linear based “waterfall” model was the first recognized process. It’s origin
likely dates back to as early as 1956, but is generally believed to have been
formally defined in a 1970 article by Winston Royce. Recognizing the limitations
of this model, particularly the concepts that any step in a process must or even
could be completed before moving forward and without the need to go back to
earlier steps in the process, led to the development of other models such as the
modified waterfall model and the spiral model (Boehm, 1988). However, these
models did not adequately address involvement of users in the processes to
ensure that users needs are met. This led to a second wave of processes
developed in the 1990s.

In 1995, Milington and Stapelton proposed the rapid application development
approach as an alternative to the waterfall and spiral models that attempted to

incorporate a more user centered view. Time cycles for projects were modified in
a concept called “time–boxing”. The idea was to develop a series of small
projects within a larger project. User-focus was provided through workshops
(known as Joint Application Development workshops) in which users and
developers worked together to come up with requirements. Between the two
changes introduced by this new process, separation of a large project into
smaller deliverables has had greater benefit to the overall development process
than the joint application development workshops.

Capitalizing on the concept of dividing projects up into smaller local projects, a
series of new processes were developed within software engineering that
included DSDM, eXtreme, Scrum, Adaptive Software Development (ASD).
These new processes were known as “agile software development processes.”
The intent of these “agile” processes (and the source of this name) is to relieve
the software development of the many burdens of a rigid process that hampers
the ability to produce software on time and within budget. There were 12 main
principles that define the original “agile manifesto” published in 2001. The
principal characteristics within the manifesto can be grouped into four main
areas: (1) better team communication (small teams, co-location of teams, daily
communication), (2) iterative delivery (“working software” as a measure of
progress, rapid and continuous delivery of “useful” software, deadlines measured
in weeks instead of months or years), (3) flexibility (self organizing teams to meet
the needs of a specific project, the willingness to accept and address late and
changing requirements), and (4) accountability (process transparency, integration
of members outside the main development team – though originally only
“business people”). But Agile is on the computer side of the imaginary line.
However, though there were attempts to incorporate users into these processes,
all of the processes described above came from software engineering and have
software development issues as the core of their perspectives. In other words,
though they acknowledged the need to address users and user requirements,
they emanated from the computer side of the human computer interface and
naturally focus on issues associated with implementation.

Developed from a perspective on the human side of the line were the “user
centered design” processes (also known as the human centered design process).
These processes emerged from the fields of Human Computer Interaction and
Human Factors Engineering and, though the included the implementation of a
design, they focus primarily on the developing the specification for the user
interaction. Formal definitions for this process were laid out in MIL-STD46855:
Human Engineering Requirements for Military Systems, Equipment, and
Facilities (1994); in two international standards organization (ISO 13407: Human-
centered design processes for interactive systems and ISO 9241:Ergonomics of
Human System Interaction), (both 1999); and in some commercial practices (e.g.,
LUCID, the Logical User Centered Interaction Design process described by

Cognetics Corporation). These processes share some of the same
characteristics as the software processes described above. Rapid development
and delivery of designs with an opportunity for feedback is central to these
approaches as well. Multidisciplinary teams are used (though different disciplines
than are involved in the software engineering developed processes). And
transparency is provided between the team developing the interface design and
those who would be responsible for implementing the design. However, there are
some key differences.

Within the user centered design processes, there is both a divergent and a
convergent phase. In the divergent phase, multiple designs are created and
presented for evaluation. The user centered design approach relies on simulation
or the creation of mockups over the development of working software. Included in
the simulations or mockups are only those portions of the interface that are being
evaluated and the simulations or mockups do not have to follow the requirements
for robustness, extensibility, maintainability, coding practices, or code
documentation–all of which are necessary for fielded code and considerations in
the agile software development process. During the convergence phase, results
from evaluations of alternate designs are used to create a single, unified design
that is likely to be a combination of previously considered designs concepts.1

The	 Issue	
In some circles, it is believed that the agile software development process
incorporates both the concepts of good user interface design and good software
development. It is assumed that obtaining feedback from end-users or end-user
representatives during the implementation phase provides sufficient feedback to
ensure an appropriate interface design is created. There are several issues with
this assumption.

Consider the often-used analogy of building a house. If you wanted to have a
house built that is custom designed just for you, no one would ever consider
hiring electricians, plumbers, carpenters, etc. and asking them to begin building a
house. “Just get started building and we’ll figure things out as we go.” If such a
case were to occur, all members of the team might get together to discuss what
they’re planning on doing and then begin moving forward, but without sufficient
detailed documentation of the intended endpoint, multiple conceptual models
(e.g., designs) will exist within the minds of each person. In addition, these
design are not likely to be completely thought-out or consistent (either between
designs or even within a single design). The outcome is unlikely to produce an
acceptable solution. Numerous past examples of this problem can be cited. The

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 This does not occur in an agile software development process since the cost of
developing multiple operational versions, even partial versions, is not considered.	

author of this paper has routinely experienced cases where work progressed on
individual elements of the design and then the new design elements had to be
forced together to create some kind of a final solution. Or the design contained
essentially separate elements of functions that only coexisted in the interface but
did not truly integrate (the term “surface integration” was coined for this effect
nearly 20 years ago). In any case, the solution was not optimized for the user
experience. There is a classic cartoon from 1970 of developing the tire swing
that demonstrates how this lack of a shared vision results in problems for all
members of the team [2].

Now consider the effect if you add the concepts of agile to this process. Ensuring
that the team is small and communicates regularly will certainly lessen some of
the issues. But the Agile team is first and foremost a development team.
Including an Interaction Designer or similarly skilled person on the team, even
from the project outset, only provides another design concept to the development
team to consider (albeit one that is likely to be more detailed and consistent in
the user interaction). But it still remains within only the mind of the architect – the
feedback opportunity within the agile process is after an incremental build. And
seeing a partially complete version of the product does not provide a clear
enough picture of where the product is ultimately heading in either overall
concept or detail. It is possible to look at a partially complete design and tell
whether or not it is heading in the direction intended only if you know where is
supposed to be headed. As a result, viewing a partially complete product may
result in each member of the team falsely believing they are all working on the
same concept because they are evaluating it against their own vision of the final
destination. This is compounded by the fact that final destination is still not
shared from the project outset.

Assuming that someone is able to clearly identify an “issue” or desirable design
change to improve the user interaction, there is the issue of having already
committed to a partial solution. In construction, the rule is “measure twice, cut
once.” It is not possible to un-cut wood or un-pour concrete. Similarly, the
ultimate loss in time and cost in even an agile software development process
prohibits making significant changes; so compromises to the user interface
design will nearly always be made over changes to the existing, partially
complete software structure. This fundamentally changes the goal of the software
design from top-down design approach (the user interface design driving the
development of a solution) to bottom-up design approach (the software solution
driving the user interface design).

Also consider the risk of software development complexity. There is always the
possibility that software development will encounter an issue in the
implementation. To maintain the Agile schedule, some portions of the design
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2	 See	 http://www.businessballs.com/treeswing.htm	

may not be competed in one iteration and moved to another. This is not an issue
for stakeholders to observe and approved progress, but it is a significant issue for
end users who would now have to experience both a partial design and a partially
functioning design.

The	 Solution	
Clearly the solution is to have a detailed vision, shared across the entire team,
prior to beginning the agile software development process. In other words, the
focus on iterative deliverables development over documentation is fine provided
this lack of documentation does not include the user interface. This is the reason
that many teams, even those that follow an agile software development process
also follow a user-centered interface design process for the presentation layer
(the view of the software from the user’s perspective).3 In fact, nearly every agile
development-based project this author has had experience with has included
wireframes prior to any code development. This makes sense since it does not
make sense to write code without a visual concept to work against, but these
wireframes extend only to the specific iteration and do not represent a full design.
The solution is to extend the wireframe development to the entire design to
ensure a complete and consistent design prior to the first iteration of the Agile
process.

Accepting the assumption that there needs to be a user centered design process
and a separate agile software development process, the question of the
relationship between these two processes remains to be defined. One possible
interaction between these two processes is that the user centered design
process produces an outcome that covers all possible scenarios and use cases,
all of the logic defining the interaction, identifies all edge cases, etc. sufficient to
constitute an interface specification. Note that the skill set associated with the
user centered design process does not include software programming or web
development (though the team needs to be knowledgeable enough to know what
is feasible and transparency with the development team is intended to ensure
this occurs). Also note that the user centered design process is intended to
explore unknown and new areas of the interface design, areas known to need
redesigning to address known interaction or experience design concerns, or
areas of perceived interaction or experience design concern. It is not intended to
address areas where these problems do not exist. For example, login processes
and checkout processes may be assumed to be correctly designed and may not
be part of a user centered design process. These factors suggest that it is ill
advised to place the responsibility of full interface specification, even limited to
the presentation layer, on the user centered design team.

An alternative approach would be for the user centered design process to
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3	 [insert	 references	 and	 examples	 of	 processes	 from	 AOL,	 EightShapes,	 etc.]	

produce guidelines to the agile software development process, but not produce
an actual design. Having the agile software development process responsible for
completely defining the design, even when provided with guidelines, would
eliminate valuable data obtained from the user centered design process on
elements of the design, its interaction, architecture, naming conventions,
navigation model, etc. – the elements that would have been tested through a
simulation or mockup. In addition, as mentioned previously, the agile software
development process does not include a divergent process needed to explore
design options before settling on a single interface design solution.

The third alternative is that the user centered design process produces a concept
for select portions of the design–as mentioned previously that portions of the
design would be new elements of the design, areas of known interaction or
experience design issues, or areas of suspected interaction or experience design
issues. What the user centered design team produces is a reasonably complete
specification for a significant portion of the design. The full logic, edge cases, etc.
that are necessary to complete the design are produced as part of the agile
development process. The agile software development process with iterative
implementation and feedback is suited for this responsibility if the feedback
process includes representatives of the design team. It becomes apparent in
comments on the agile development team to be aware of when assumptions are
being made to complete the design concepts provided by the user centered
design team and to obtain their feedback that these assumptions are consistent
with the design concept. It is incumbent upon the user centered design team to
provide rapid feedback to the agile software development process so as to have
minimal impact on the software development progress. However, there is still a
significant set of risks in this approach. The agile software development process
is predicated on a small team of individuals. This small team would not be
capable of addressing an enterprise-wide project in a timely fashion. Multiple
agile software development teams would suffer the same problems of
inconsistency between the teams that would have a detrimental effect on the
user interface. Therefore, the successful application of this process of partial
specification prior to development is likely to have very limited applications.
Even if the project is small enough, there is still a reasonable probability that
initial implementation may have to be radically changed to support other features
if there are dependencies between these features – which is quite often the case.
Unless sufficient analysis has been done on the overall concept prior to
performing any development, the order of implementation in an incremental build
may increase the probability of major change (or compromised in the design). In
other words, the order in which incremental builds implement specific features
may have a significant impact the probability of needing a major change in the
software’s architecture.

The issue with all of these potentials for interacting between a user centered

design process and agile software development process continues to show that
the user interface is likely to be compromised as a result of attempts to them for
granted without a complete and clear specification of the user interface and
behavior. Since this is not the outcome of the user centered design process more
possible through an agile development process, this suggests that there is an
interim engagement between the two processes – a joint engagement to
complete the work of both sides. If, at the end of a user centered design process,
the interface or user experience design team in conjunction with the software
development team then jointly completes the partially completed design, issues
of both sides can be addressed. The compromises may need to be made to the
user interface at this point to address implementation issues, but it is done with
the full awareness of the team responsible for developing the design and at a
point where there is minimal cost associated with these changes since modifying
the concept or even a mockup or simulation is far easier than restructuring
operational code. Therefore, this purpose of this interim step is the creation of a
full specification of just the user interface, addressing the needs of the interface
designers as well as the needs of the developers. And the outcome is a
specification that is detailed enough to allow development to progress with
minimal chance of having to make major changes or sacrificing the integrity of
the design.

However, even in a well thought out process, there will exist some probability that
there will be a need for additional user research or possible additional interaction
or experience design work. In these cases, a disruption to the agile software
development process may be inevitable, but it is minimized by two factors–the
user centered design process itself is agile or like in its nature and the agile
software development process may focus on other elements of the design
answers are obtained. In some cases, the answer to these questions may be
obtained through expert reviews, bench research, stakeholder or subject matter
interviews, or other non-user based approaches and may not require the more
time consuming approaches that require feedback from actual users.

Organizational	 Structure	
The organizational structure established to conduct a user centered design and
complementary agile software development process can have significant impact
on the quality of these processes. In some organizations, the same team is given
the responsibility to do both processes. This has some significant drawbacks.
First, if the same team is to do both the user centered design process (come up
with a design) as well as the agile software development process (implement the
design) there is an inherent conflict of interest with in the team. Since the team is
responsible for building the product, they are unlikely to design a product that is
difficult to build so compromises will again be made in favor of a simpler software
solution. In addition, the skill set associated with these two processes is

fundamentally different. User centered design process requires skills in human
factors engineering (i.e. psychology), interaction or experience design, visual
design, graphic design, content writing, and possibly industrial design. The skill
set associated with an agile software development process includes software
engineering, Web development, system security, information security,
networking, and databases. There are few if any people sufficiently skilled to be
considered capable of performing both functions adequately4. Even if they were,
they would need to be a member of one team or the other for the reasons just
identified (to avoid the conflict of interest).

In some organizations, the user centered design process is a staffed by a
separate group with the appropriate skills but one that reports directly to the
software development team. This creates a different conflict of interest in the
management of these two teams. As it was eloquently put, “there is a reason we
don’t ask one of the lawyers to service the judge”. If the user centered design
team reports to the software development team, decisions that affect both parties
will once again tend to favor the software development process since that is the
primary focus of the team lead.5

A more appropriate arrangement between the two processes is to create
separate teams, each with a responsibility for one of the two processes, that both
report to a neutral authority. In larger organizations, this neutral authority is a
systems engineer. The system engineer is neither a member of the user centered
design team nor a member of the software development team. System engineers
are members of the management team responsible for overall project completion
(total project schedule and cost for example). Their role as project managers
overseeing both teams would be to strike an appropriate balance between the
desire is for a more optimal interface design versus the cost and schedule impact
of implementing design6 in such an arrangement, the natural tension between
these two teams is both expected and desirable since it clearly identifies where
trade-offs between the two teams occurs.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
4	 	 It is also unlikely that any single team member would be sufficiently skilled in all
of the areas within either of these processes let alone both of them, though in
smaller organizations a single person may be expected to be reasonably capable
in multiple elements of their selected process.
5	 	 It is possible that does not seem to be a very common occurrence that these
rules could be reversed–that the software development team would report to the
user centered design team. In such a case the reverse conflict of interest would
also exist and is not a recommended approach.	
6	 	 In very large organizations and larger projects, the System Engineer may be
responsible for elements outside of the software development process such as
manpower, personnel, training, facilities, etc.	

About	 the	 Author	
Bill Killam is a Human Factors Engineer with over 30 years of experience. He
holds professional certification in Human Factors Engineering from the Board of
Certification in Professional Ergonomics and is an active member of the
American Psychological Association, the Human Factors and Ergonomic Society,
the Usability Professionals Association, and the Association of Computing
Machinery. He is the president and principle consultant at User-Centered
Design, Inc., a Human Factors Engineering consultancy in Northern Virginia. He
is also a professor in the College of Systems Engineering and Operations
Research at George Mason University, the College of Information Studies at the
University of Maryland, and the School of Library and Information Science at
Catholic University of America.

